In biology, energy is an attribute of all biological systems from the biosphere to the smallest living process. In an individual organism it is responsible for growth and development of a biological cell or an organelle of a biological organism. Energy is thus often said to be stored by cells in the structures of molecules of substances such as carbohydrates (including sugars) and lipids, which release energy when reacted with oxygen. In human terms, the human equivalent (H-e)[8] indicates, for a given amount of energy expenditure, the relative quantity of energy needed for human metabolism, assuming an average human energy expenditure of 12,500 kJ per day and a basal metabolic rate of 80 watts. The human equivalent assists understanding of energy flows in physical and biological systems by expressing energy units in human terms: it provides a “feel” for the use of a given amount of energy. A professional cyclist can maintain a rate of energy use of 400 watts, or 5 H-e, for a prolonged period.
In chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. Since a chemical transformation is accompanied by a change in one or more of these kinds of structure, it is invariably accompanied by an increase or decrease of energy of the substances involved. In geology, continental drift, mountain ranges, volcanoes, and earthquakes are phenomena that can be explained in terms of energy transformations in the Earth's interior.[9] While meteorological phenomena like wind, rain, hail, snow, lightning, tornadoes and hurricanes, are all a result of energy transformations brought about by solar energy on the planet Earth. In cosmology and astronomy the phenomena of stars, nova, supernova, quasars and gamma ray bursts are the universe's highest-output energy transformations of matter. All stellar phenomena (including solar activity) are driven by various kinds of energy transformations. Energy in such transformations is either from gravitational collapse of matter (usually molecular hydrogen) into various classes of astronomical objects (stars, black holes, etc.), or from nuclear fusion (of lighter elements, primarily hydrogen).